

Sales Program C&I, Agriculture, Mining

Edition 2/18 valid from 10/2018

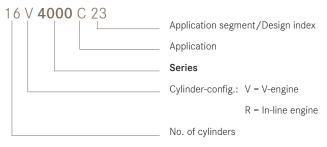
Power. Passion. Partnership.

- 02 Contents
- 04 MTU: Power. Passion. Partnership.
- 05 Engine designation
 General specifications
- 06 Selection guideline

Applications

- **08** 5A Diesel engines for heavy duty operation 75 kW 1865 kW
- 18~~5B Diesel engines for medium duty operation $110~\mbox{kW}$ $3000~\mbox{kW}$
- 30 5C Diesel engines for short-time operation 290 kW 750 kW
- 32 Diesel engines for underground mining 75 kW 429 kW

- 36 Automation
- 42 Engines data
 Cylinder data
 Dimensions and masses
 Weight/Power ratio
- 56 Parts & Service MTU ValueCare
- 66 Exhaust emissions
- 68 Emission Flex Package
- 71 Conversion table


MTU: Power. Passion Partnership.

MTU is the core brand of Rolls-Royce Power Systems AG, which is a worldleading provider of high- and medium-speed diesel and gas engines, complete drive systems and distributed energy systems for the most demanding requirements. The product range of MTU is one of the widest and most modern in the sector. We offer comprehensive, powerful and reliable engine solutions for yachts, commercial ships and naval vessels, construction and industrial vehicles, agricultural machinery, mining, rail and military vehicles as well as for the oil and gas industry. We also provide a full line of service products to help you maximize uptime and performance. For over 100 years, MTU has been known for cutting-edge innovation and technological leadership. That same spirit of innovation inspires our sustainability efforts. Today and in the future, our focus is on developing and implementing system solutions to maximize efficiency and meet emissions standards.

On-Highway engine Off-Highway engine from Mercedes-Benz: from MTU: OM 934 MTU 4R 1000 OM 936 MTU 6R 1000 OM 470 MTU 6R 1100 OM 471 MTU 6R 1300 OM 473 MTU 6R 1500

Explanation of the engine designation

Series 900, 460, 1000, 1100, 1300, 1500, 2000, 4000 Example:

General specifications

Cooling variants

Separate circuit charge air cooling Air-to-air charge-air cooling

2000/4000 460/900/S60/ 1000/1100/1300/1500

Diesel engine for mobile industrial, agricultural and mining applications

- > Four-stroke, direct-injection
- > Liquid-cooling and air-cooling
- > V or In-line configuration

Power Definition

Rated power of diesel engines in this Sales Program corresponds to ISO 3046

ICFN = ISO standard (continuous) fuel stop power

IFN = ISO standard fuel stop power

(ratings also apply to SAE J 1995 and J 1349 standard conditions)

Barometric pressure: 1000 mbar Site altitude above sea level: 100 m

MTU distributor for current information and binding data.

For further information on MTU C&I, Agriculture and Mining products please contact your MTU distributor or visit: www.mtu-online.com

Selection Guideline

Typical Applications

5A - Diesel engines for heavy duty operation	75 kW - 1865 kW	Page 08 - 17
Rating definition: continuous operation with up to 100% load	Load factor > 60%	
Operating hours: unrestricted	Fuel stop power (ICFN)	
5B - Diesel engines for medium duty operation	110 kW - 3000 kW	Page 18 - 29
Rating definition: continuous operation with variable load	Load factor < 60%	
Operating hours: unrestricted	Fuel stop power (ICFN)	
5C - Diesel engines for short-time operation	290 kW - 750 kW	Page 30 - 31
Rating definition: intermittent operation with variable load	Load factor > 60%	
Operating hours: max. 1000 hours per year	Fuel stop power (ICFN)	
Diesel engines for Underground mining	75 kW - 429 kW	Page 32 - 35
Automation		Page 36 - 41
CaPoS smart edition		
Engine management system - Typical configuration Series 460, 500, 900		
motivline – the management technology for mining applications with		
Series 4000-03		
Engines Data		Page 42 - 55
Cylinder Data		
Dimensions and Masses, Weight/Power Ratio		
Parts & Service		Page 56 - 65
MTU Value Care		
A portfolio of valuable products and services		
Exhaust emissions, Emission Flex Package and Conversion Table		Page 66 - 71

MTU distributor/dealer.

For information on specific on-highway certificates please contact your

75 kW - 295 kW (101 bhp - 396 bhp)

> Intake air temperature:

25°C

manufactured by

5A - Heavy duty operation

Engine model	Rated powe	er	
	ICFN		
	kW	bhp	rpm
	Air-to-air ch	arge-air cooling	
4R 904 C21	75	101	2200
4R 904 C31	90	121	2200
4R 924 C22	95	127	2200
6R 906 C21	130	174	2200
6R 906 C31	150	201	2200
6R 926 C22	175	235	2200
6R 926 C32	195	261	2200
6R 460 C11R	220	295	1800
6R 460 C11	242	325	1800
6R 460 C21	260	349	1800
6R 460 C31	295	396	1800
6R 460 C22	265	355	1800
6R 460 C32	295	396	1800

Optimization: @ EPA Nonroad T3 Comp (40CFR89)

- 23 EU Nonroad St IIIA Comp (97/68/EC)
- China Onroad Stage V (GB17691-2005)
- Thina NRMM Stage III (GB20981-2014)
- EU Nonroad St IIIB Comp (97/68/EC)

Peak Torque			Optimization
Nm	lb-ft	rpm	
400	295	1200-1600	2023 3
470	347	1200-1600	2023
550	406	1200-1600	3939
700	516	1200-1600	2023
750	553	1200-1600	2023
850	627	1200-1600	3939
1020	752	1200-1600	3939
1400	1033	1300	2023
1600	1180	1300	2023
1750	1291	1300	@@3
1900	1401	1300	0033
1850	1290	1300	933
2000	1475	1300	2939

224 kW - 336 kW (300 bhp - 450 bhp)

> Intake air temperature:

25°C

5A - Heavy duty operation

Engine model	Reference no.	Rated po	wer	
		ICFN		
		kW	bhp	rpm
	Air-to-air charge-	air cooling		
S60 (12.7 I)	6063MK33	224	300	2100
	6063MK33	242	325	2100
	6063MK33	261	350	2100
	6063MK33	280	375	2100
	6063MK33	298	400	2100
	6063MK33	298	400	2200
S60 (14 I)	6063HK33	336	450	2100
S60 (14 I)	6063HV33	242	325	2100
	6063HV33	280	375	2100
	6063HV33	298	400	2100
	6063HV33	317	425	2100
	6063HV33	336	450	2100

Optimization:

⑤ EU Nonroad St II Comp (97/68/EC)

@ EPA Nonroad T3 Comp (40CFR89)

② EU Nonroad St IIIA Comp (97/68/EC)

Thina NRMM Stage III (GB20981-2014)

Peak Torque		Optimization	
Nm	lb-ft	rpm	
1424	1050	1350	<u> </u>
1559	1150	1350	50
1831	1350	1350	50
1831	1350	1350	50
1898	1400	1350	50
1830	1350	1350	50
2237	1650	1350	50
1559	1150	1350	2023
1830	1350	1350	20233
1898	1400	1350	@ Ø3
2000	1475	1350	@@3
2102	1550	1350	2023

100 kW - 400 kW (134 bhp - 536 bhp)

> Intake air temperature:

25°C

manufactured by

5A - Heavy duty operation

Engine model	Rated power	er	
	ICFN		
	kW	bhp	rpm
	Air-to-air co	oling	
4R 1000 C10	100	134	2200
4R 1000 C20	115	154	2200
4R 1000 C30	129	173	2200
6R 1000 C20	180	241	2200
6R 1000 C30	210	282	2200
6R 1100 C30	280	375	1700
6R 1300 C20	320	429	1700
6R 1300 C30	340	456	1700
6R 1500 C30	400	536	1700

- Optimization: @ EPA Nonroad T4 (40CFR1039)
 - © EU Nonroad St IV (97/68/EC)
 - W UN ECE R96 Emission Flex Package (EFP)

Peak Torque			Optimization
Nm	lb-ft	rpm	
600	443	1200-1500	<u> </u>
675	498	1200-1500	2)2)4)
750	553	1200-1600	2)2749
1000	738	1200-1600	212749
1150	848	1200-1600	000
1900	1401	1300	2)2/40
2100	1549	1300	000
2200	1623	1300	ØØ4
2600	1918	1300	2)2040

115 kW - 400 kW (154 bhp - 536 bhp)

> Intake air temperature:

25°C

manufactured by

5A - Heavy duty operation

Engine model	Rated power	er	
	ICFN		
	kW	bhp	rpm
	Air-to-air co	oling	
4R 1000 C21	115	154	2200
4R 1000 C31	129	173	2200
6R 1000 C11	180	241	2200
6R 1000 C21	195	261	2200
6R 1000 C31	210	282	2200
6R 1100 C11	240	322	1600
6R 1100 C21	260	349	1600
6R 1100 C31	280	375	1600
6R 1300 C21	320	429	1600
6R 1300 C31	340	456	1600
6R 1500 C21	380	510	1600
6R 1500 C31	400	536	1600

Optimization: (6) EU Nonroad St V (2016/1628)

Peak Torque		Optimization	
Nm	lb-ft	rpm	
675	498	1200-1500	45
750	553	1200-1600	45
1000	738	1200-1600	45
1100	811	1200-1600	45
1200	885	1200-1600	45
1700	1254	1300	45
1800	1328	1300	45
1900	1401	1300	45
2200	1623	1300	45
2300	1696	1300	45
2600	1918	1300	45
2700	1991	1300	45

567 kW - 1865 kW (760 bhp - 2500 bhp)

> Intake air temperature:

25°C

> Charge-air coolant temperature: 45°C (12V2000C12/S4000)

50°C (16V2000C12)

5A - Heavy duty operation

Engine model	Rated powe	r	
ICFN			
	kW	bhp	rpm
	Separate cir	cuit charge-air cooli	ng (SCCC)
12V 2000 C12	567	760	2100
16V 2000 C12	783	1050	1800/2100
12V 4000 C11R	1193	1600	1900
12V 4000 C15	1150	1542	1800
12V 4000 C11	1286	1725	1900
12V 4000 C13R	1193	1600	1800
12V 4000 C25	1250	1676	1800
12V 4000 C13L	1425	1910	1800
12V 4000 C35	1500	2012	1800
16V 4000 C11R	1600	2146	1800
16V 4000 C11	1715	2300	1900
16V 4000 C13R	1492	2000	1800
16V 4000 C13	1750	2345	1800
16V 4000 C13	1750	2345	1900
16V 4000 C13L	1865	2500	1800/1900

Optimization: X Fuel consumption optimized

- ② EPA Nonroad T1 Comp (40CFR89)
- ② EPA Nonroad T4 (40CFR1039)
- Thina NRMM Stage III (GB20981-2014)

Peak Torque			Optimization
Nm	lb-ft	rpm	
3300	2441	1350	
4450	3288	1350	(9)
7612/7595	5614/5602	1500	X 2
7351	5422	1494	0
6985	5151	1500	X 2
7595	5600	1500	X (93)
7990	5893	1494	0
9070	6690	1500	⊠®
9588	7072	1494	0
10188	7515	1500	2
9313	6896	1500	⊠ ②
9520	7022	1350	X (93)
11141	8216	1500	⊠®
11141	8216	1500	X
11870	8754	1500	X (9)3)

110 kW - 375 kW (148 bhp - 503 bhp)

> Intake air temperature:

25°C

manufactured by

5B - Medium duty operation

Engine model	Rated power		
	ICFN		
	kW	bhp	rpm
	Air-to-air ch	arge-air cooling	· ·
4R 904 C61	110	148	2200
4R 904 C71	129	173	2200
4R 924 C71	145	194	2200
4R 924 C52	115	154	2200
4R 924 C62	129	173	2200
4R 924 C72	150	201	2200
6R 906 C51	170	228	2200
6R 906 C61	190	255	2200
6R 906 C71	205	275	2200
6R 926 C61	220	295	2200
6R 926 C71	240	322	2200
6R 926 C52	210	282	2200
6R 926 C62	225	302	2200
6R 926 C72	240	322	2200
6R 460 C41	315	422	1800
6R 460 C51	335	449	1800
6R 460 C61	360	483	1800
6R 460 C71	375	503	1800
6R 460 C42	315	422	1800
6R 460 C52	335	449	1800
6R 460 C62	360	483	1800
6R 460 C72	375	503	1800

Optimization: @	EPA	Nonroad	T3	Comp	(40CFR89)	
-----------------	-----	---------	----	------	-----------	--

- ② EU Nonroad St IIIA Comp (97/68/EC)
- China Onroad Stage V (GB17691-2005)
- Ohina NRMM Stage III (GB20981-2014)
- BPA Nonroad T4i Comp (40CFR1039)
- 9 EU Nonroad St IIIB Comp (97/68/EC)

Peak Torque	Optimization		
Nm	lb-ft	rpm	_
580	428	1200-1600	@33
675	498	1200-1600	@33
705	520	1200-1600	0033
610	450	1200-1600	3839
675	498	1200-1600	3839
800	590	1200-1600	3839
810	595	1200-1600	0033
1000	735	1200-1600	@33
1100	810	1200-1600	0033
1200	885	1200-1600	0033
1300	959	1200-1600	0033
1120	826	1200-1600	3839
1200	885	1200-1600	3839
1300	959	1200-1600	3839
2000	1475	1300	0033
2000	1475	1300	@33
2200	1623	1300	@33
2200	1586	1300	@33
2000	1475	1300	93839
2000	1475	1300	933
2200	1620	1300	03839
2200	1620	1300	3839

317 kW - 429 kW (425 bhp - 575 bhp)

> Intake air temperature:

5B - Medium duty operation

Engine model	Reference no.	Rated po	wer	
		ICFN		
		kW	bhp	rpm
	Air-to-air charge-	air cooling		
S60 (12.7 I)	6063MK33	317	425	2100
	6063MK33	332	445	2200
	6063MK33	336	450	2100
	6063MK33	354	475	2100
S60 (14.0 I)	6063HV33	354	475	2100
	6063HV33	373	500	2100
	6063HV33	391	525	2100
	6063HV33	397	533	2000
	6063HV33	410	550	2100
	6063HK33	391	525	2100
	6063HK33	397	533	2000
	6063HK33	410	550	2100
	6063HK33	410	550	2300
	6063HK33	429	575	2100

25°C

Nm	lb-ft	rpm	
2000	1475	1350	
2000	1475	1350	50
2102	1550	1350	59
2102	1550	1350	50
2102	1550	1350	0033
2102	1550	1350	003 3
2373	1750	1350	003
2373	1750	1350	003
2373	1750	1350	033
2373	1750	1350	50
2373	1750	1350	50
2373	1750	1350	59
2373	1750	1350	50
2373	1750	1350	50

Optimization: ⑤ EU Nonroad St II Comp (97/68/EC)

- @ EPA Nonroad T3 Comp (40CFR89)
- 29 EU Nonroad St IIIA Comp (97/68/EC)
- China NRMM Stage III (GB20981-2014)

150 kW - 460 kW (201 bhp - 617 bhp)

> Intake air temperature:

25°C

manufactured by

optimized by

5B - Medium duty operation

Engine model	Rated powe	er		
	ICFN			
	kW	bhp	rpm	
	Air-to-air co	oling		
4R 1000 C40	150	201	2200	
4R 1000 C50	170	228	2200	
6R 1000 C40	230	308	2200	
6R 1000 C50	260	349	2200	
6R 1100 C40	300	402	1700	
6R 1100 C50	320	429	1700	
6R 1300 C40	360	483	1700	
6R 1300 C50	380	510	1700	
6R 1300 C60	390	523	1700	
6R 1500 C50	430	577	1700	
6R 1500 C60	460	617	1700	

Optimization: @ EPA Nonroad T4 (40CFR1039)

© EU Nonroad St IV (97/68/EC)

UN ECE R96 Emission Flex Package (EFP)

Peak Torque	Optimization		
Nm	lb-ft	rpm	
800	590	1200-1600	<u> </u>
900	664	1200-1600	2)2)4)
1250	922	1200-1600	2)2749
1400	1033	1200-1600	2)2749
2000	1475	1300	2)2)40
2100	1549	1300	2)2)4)
2300	1696	1300	2)2749
2380	1755	1300	2)2749
2460	1814	1300	2)2)40
2750	2028	1300	2)2/40
2900	2139	1300	000

150 kW - 480 kW (201 bhp - 644 bhp)

> Intake air temperature:

25°C

manufactured by

optimized by

5B - Medium duty operation

Engine model	Rated power				
	ICFN				
	kW	bhp	rpm		
	Air-to-air co	oling			
4R 1000 C41	150	201	2200		
4R 1000 C51	170	228	2200		
6R 1000 C41	230	308	2200		
6R 1000 C51	260	349	2200		
6R 1000 C61	280	375	2200		
6R 1100 C41	300	402	1600		
6R 1100 C51	320	429	1600		
6R 1100 C61	340	456	1600		
6R 1300 C41	360	483	1600		
6R 1300 C61	390	523	1600		
6R 1500 C51	430	577	1600		
6R 1500 C61	460	617	1600		
6R 1500 C71	480	644	1600		

Optimization: (5) EU Nonroad St V (2016/1628)

Peak Torque			Optimization
Nm	lb-ft	rpm	
850	627	1200-1600	45
950	701	1200-1600	45
1300	959	1200-1600	45
1450	1069	1200-1600	€5
1550	1143	1200-1600	45
2000	1475	1300	45
2100	1549	1300	45
2200	1623	1300	45
2400	1770	1300	45
2600	1918	1300	45
2850	2102	1300	45
3000	2213	1300	45
3100	2286	1300	45

634 kW - 2013 kW (850 bhp - 2699 bhp)

> Intake air temperature:

25°C

> Charge-air coolant temperature: 45°C (12V 2000/16V 2000 C66/

S4000)

47°C (16V 2000 C22)

5B - Medium duty operation

Engine model	Rated powe	r	
	ICFN		
	kW	bhp	rpm
	Separate cir	cuit charge-air cooli	ng (SCCC)
12V 2000 C22R	634	850	2100
12V 2000 C22	675	905	2100
12V 2000 C66R*	783	1050	1800
12V 2000 C66	783	1050	2100
16V 2000 C22	899	1205	2100
16V 2000 C66	970	1301	2100
12V 4000 C21R	1398	1875	1900
16V 4000 C21R	1492	2000	1900
12V 4000 C21	1510	2025	1900
12V 4000 C23R	1510	2025	1800
12V 4000 C23R	1510	2025	1900
12V 4000 C23	1680	2253	1800/1900
12V 4000 C55	1750	2347	1900
12V 4000 C65	1864	2500	1800
12V 4000 C65	1864	2500	1900
16V 4000 C21	1864	2500	1900
16V 4000 C45	2000	2682	1800
16V 4000 C21L	2013	2699	1900

Optimization:

Fuel consumption optimized

② EPA Nonroad T1 Comp (40CFR89)

② EPA Nonroad T4 (40CFR1039)

① China NRMM Stage III (GB20981-2014)

* also available for 2A application

Peak Torque			Optimization
.			
Nm	lb-ft	rpm	
3750	2766	1500	
4000	2950	1500	19
4636	3419	1100	393)
4636	3419	1100	383)
5250	3872	1500	
5286	3899	1400	393)
7610	5613	1500	⊠2
9494	7003	1500	2
8199	6047	1500	⊠2
8482	6255	1700	⊠®3
on request	on request	on request	⊠®
9435	6959	1700	⊠®3
9258	6828	1805	<u></u>
10409	7677	1710	<u></u>
9861	7273	1805	0
10146	7483	1500	⊠2
11169	8238	1710	0
10933	8064	1500	⊠2

2013 kW - 3000 kW (2699 bhp - 4023 bhp)

> Intake air temperature:

25°C

> Charge-air coolant temperature: 45°C (S4000)

5B - Medium duty operation

Engine model	Rated power ICFN			
	kW	bhp	rpm	
	Separate cir	cuit charge-air cooli	ng (SCCC)	
16V 4000 C23R	2013	2699	1800	
16V 4000 C23R	2013	2699	1900	
16V 4000 C31	2125	2850	1900	
16V 4000 C23	2240	3000	1800	
16V 4000 C55	2240	3004	1800	
16V 4000 C65	2400	3218	1800	
20V 4000 C22	2720	3650	1800	
20V 4000 C23	2800	3755	1800	
20V 4000 C23L	3000	4023	1800	

Optimization:

Fuel consumption optimized

② EPA Nonroad T1 Comp (40CFR89)

② EPA Nonroad T4 (40CFR1039)

① China NRMM Stage III (GB20981-2014)

Peak Torque	Optimization		
Nm	lb-ft	rpm	
11310	8342	1700	⊠ ®3
on request	on request	on request	⊠®
11142	8228	1800	X
12566	9268	1700	X (93)
12509	9226	1710	2)
13403	9886	1710	2)
15159	11181	1500	2
15728	11600	1700	⊠®3
16852	12429	1700	⊠®3

290 kW - 496 kW (389 bhp - 665 bhp)

> Intake air temperature:

25°C

> Charge-air coolant temperature: 45°C (S2000)

5C - Short-time duty operation

Engine model	Reference no.	Rated power		
		ICFN		
		kW	bhp	rpm
	Air-to-air charge-	air cooling		
6R 1000 C70	-	290	389	2000
S60 (12.7 I)	6063MK33	373	500	2100
	6063MK33	373	500	2300
S60 (14.0 I)	6063HV33	447	600	2100
	6063HV45	447	600	2300
	6063HV33	470	630	2100
	6063HV33	496	665	2300
	6063HV45	496	665	2300
	6063HK45	447	600	2300
	6063HK33	447	600	2100
	6063HK33	470	630	2100
	6063HK33	496	665	2300
	6063HK45	496	665	2300

Optimization: ⑤ EU Nonroad St II Comp (97/68 EC)

@ EPA Nonroad T3 Comp (40CFR89)

② EPA Nonroad T4 (40CFR1039)

② EU Nonroad St IIIA Comp (97/68/EC)

② EU Nonroad St IV (97/68/EC)

W UN ECE R96 Emission Flex Package (EFP)

Peak Torque			Optimization
Nm	lb-ft	rpm	
1400	1033	1200-1600	2)\$\text{20}\$
2102	1550	1350	50
2237	1650	1350	50
2576	1900	1350	003
2576	1900	1350	2023
2576	1900	1350	003
2576	1900	1350	2023
2576	1900	1350	003
2576	1900	1350	50
2576	1900	1350	50
2576	1900	1350	50
2576	1900	1350	50
2576	1900	1350	50

Diesel engines for Underground Mining applications

75 kW - 205 kW (101 bhp - 275 bhp)

> Intake air temperature:

25°C

manufactured by

Underground Mining

Engine model	Reference no.	Rated po	Rated power	
		ICFN		
		kW	bhp	rpm
	Air-to-air charge-	air cooling		
4R 904 C	4R 904 C21	75	101	2200
	4R 904 C31	90	121	2200
	4R 904 C	100	134	2200
	4R 904 C61	110	147	2200
	4R 904 C71	130	174	2200
6R 906 C	6R 906 C31	150	201	2200
	6R 906 C51	170	228	2200
	6R 906 C	180	241	2200
	6R 906 C61	190	255	2200
	6R 906 C71	205	275	2200

Optimization: MSHA (US regulation 30 CFR part 7)

Peak Torque			Optimization
Nm	lb-ft	rpm	
400	295	1400	MSHA
470	345	1400	MSHA
520	385	1400	MSHA
580	430	1400	MSHA
675	500	1400	MSHA
750	553	1400	MSHA
810	597	1400	MSHA
900	665	1400	MSHA
1000	738	1400	MSHA
1100	811	1400	MSHA

Diesel engines for Underground Mining applications

224 kW - 429 kW (300 bhp - 575 bhp)

> Intake air temperature: 25°C

Underground Mining

Engine model	Reference no.	Rated power		
		ICFN		
		kW	bhp	rpm
	Air-to-air charge-	air cooling		
S60 (12.7 I)	6063MK32	224	300	2100
	6063MK32	242	325	2100
	6063MK32	261	350	2100
	6063MK32	280	375	2100
	6063MK32	298	400	2100
	6063MK32	317	425	2100
	6063MK32	336	450	2100
	6063MK32	354	475	2100
S60 (14.0 I)	6063HK32	392	525	2100
	6063HK32	410	550	2100
	6063HK32	429	575	2100

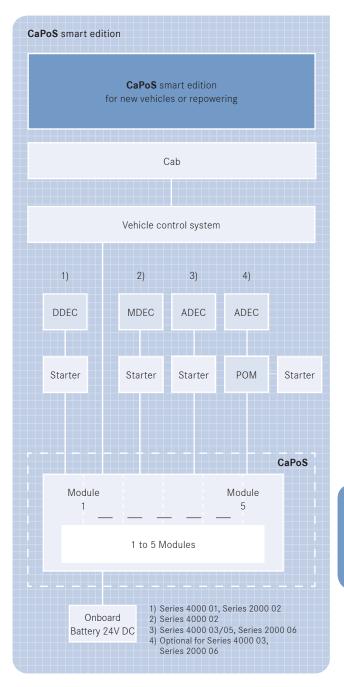
Optimization: MSHA (US regulation 30 CFR part 7)

Peak Torque			Optimization
Nm	lb-ft	rpm	
1424	1050	1350	MSHA
1600	1150	1350	MSHA
1830	1350	1350	MSHA
1830	1350	1350	MSHA
1830	1350	1350	MSHA
2000	1475	1350	MSHA
2102	1550	1350	MSHA
2102	1550	1350	MSHA
2373	1750	1350	MSHA
2373	1750	1350	MSHA
2373	1750	1350	MSHA

Automation

CaPoS smart edition - Capacitor Power System for Series 2000, 4000

Reliable power right from the start.


CaPoS smart edition was especially developed for heavy and duty applications and provides the high energy required by the 24V DC starters during the starting sequence.

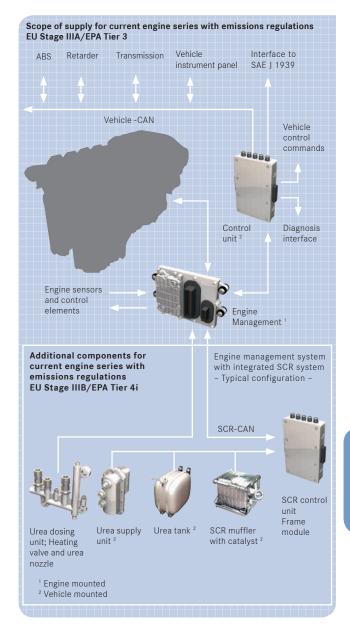
CaPoS uses capacitor technology to optimize startup behavior. The number of modules to be used depends on the type of engine involved and its breakaway torque. CaPoS smart edition may be used autonomously or in conjunction with the **motiv**line automation system.

The most important features at a glance:

- Autonomous and modular construction
- Maintenance-free system
- Significant reductions in weight and volume compared with conventional starter batteries
- Optimized cold-starting capabilities
- Low life-cycle costs
- No voltage interruption during start-up
- On-board voltage of 24V DC
- Integrated self-monitoring system with interface to vehicle control system
- Integrated DC-/DC converter for automatical recharging
- IP66 protection

We manage everything for you.

All our engines are equipped with electronic engine controls. Intelligent electronics ensure that performance and efficient operation are achieved under all operating conditions. Innovative, high-end technology takes over the control, regulation and monitoring of the drive system. The systems are modular in order to be able to adapt the diesel engine to the complex optimal operating conditions of the equipment. In addition, operating conditions that could lead to damage are detected in time.


Your benefits:

- Protection of the engine and therefore safety by:
 - · Reporting critical operating conditions
 - · Temporary reduction in power
 - · Automatic shutdown
 - · Start inhibitor
 - · Over speed regulation
 - · Self-diagnosis and regulation for the system
- Standard interfaces for external system connections, such as CAN data bus and SAE J 1939
 - · Easy integration with the vehicle
 - · Flexible adjustment to the vehicle or vehicle components and project specific needs
 - · Interface for engine diagnosis
- High availability and fail-safe operation
- High power efficiency
- Low fuel consumption
- Minimal exhaust emissions that fully meet all legal requirements

For engines equipped with SCR systems, we are your expert technology partner. The latest electronics integrate the necessary SCR components for the reduction of emissions intelligently into the overall system. This ensures optimal tuning of all engine and emission control functions.

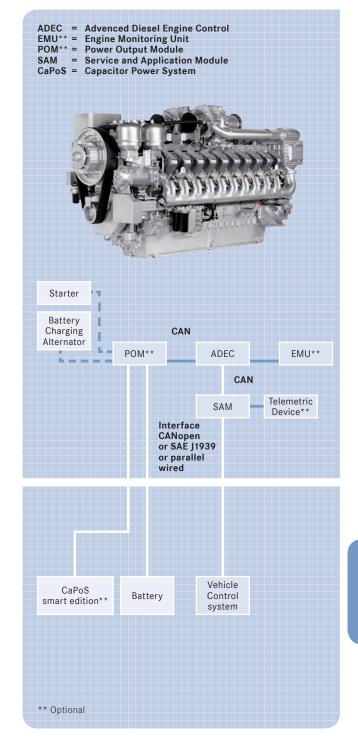
Engine management system

- Typical configuration Series 460, 900

motiv*line* - the management technology for mining applications with Series 4000-03

The **motiv**line automation system is an innovative highend technology developed by MTU for mining vehicles. motivline performs the control and monitoring functions for the entire engine plant. The modular system guarantees optimum adaptation of the diesel engine to the diversity of operating conditions in mining.

motiv*line* supports:

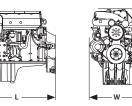

- > flexible adaptation to the vehicle and/or its components and project-specific requirements
- > automatic power output adjustment or optional engine shutdown by the integrated safety system and all other necessary monitoring and safety functions
- > Interface MTU telemetric device for GSM* for MTU ValueCare Product Remote Services (optional with user agreement), which provides direct access to the data of your MTU engine
- > Easy adaptation by means of MTU interface module SAM

motiv*line* harmonizes the engine integration into the vehicle. Because of that optimized conditions generates:

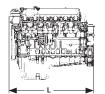
- > high power- efficiency
- > low fuel consumption
- > minimal exhaust emissions that are substantially below the legal limits

For the Series 4000 engines, a new engine management system ADEC has been developed, whilst there is also an extensive range of standardized solutions available - with options for flexible interfaces. The Engine Monitoring Unit EMU provides further enhanced availability by means of additional monitoring and diagnostic options for the engine. Complementing the SAM interface module, POM optimizes the start process and simplifies cabling to the starter and alternator. The complete Plug & Play system makes installation of the engine in the vehicle considerably simpler and faster.

* Global System for Mobile Communications



Series 900

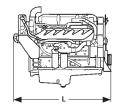


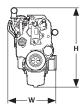
Series 460

Diesel engines for C&I, Agriculture and Mining applications

Engine	Cylinder data		
	Bore/Stroke	Cyl. displac.	Total displac.
	mm (in)	I (cu in)	I (cu in)
4R 904 Cx1	102/130	1.06	4.2
4 Cyl./In-Line	(4.0/5.1)	(65)	(256)
4R 924 Cx1	106/136	1.20	4.8
4 Cyl./In-Line	(4.2/5.4)	(73)	(293)
4R 924 Cx2	106/136	1.20	4.8
4 Cyl./In-Line	(4.2/5.4)	(73)	(293)
6R 906 Cx1	102/130	1.06	6.4
6 Cyl./In-Line	(4.0/5.1)	(65)	(391)
6R 926 Cx1	106/136	1.20	7.2
6 Cyl./In-Line	(4.2/5.4)	(73)	(439)
6R 926 Cx2	106/136	1.20	7.2
6 Cyl./In-Line	(4.2/5.4)	(73)	(439)
6R 460 C11R-C21 6 Cyl./In-Line	128/166	2.13	12.8
	(5.0/6.5)	(129)	(781)
6R 460 C31-C71	128/166	2.13	12.8
6 Cyl./In-Line	(5.0/6.5)	(129)	(781)
6R 460 Cx2	128/166	2.13	12.8
6 Cyl./In-Line	(5.0/6.5)	(129)	(781)

Please note, specifications are subject to change without notice. All dimensions are approximate. Details are subject to options selected.


42 | C&I, Agriculture, Mining | Sales Program 2018


Dimensions, max.	Mass, max.
LxWxH	(dry)
mm (in)	kg (lbs.)
830 x 672 x 945	395
(33 x 26 x 37)	(870)
830x645x925	405
(33 x 25 x 36)	(893)
830x645x925	415
(33 x 25 x 36)	(915)
1087x688x956	530
(43 x 27 x 38)	(1168)
1087x681x956	530
(43 x 27 x 38)	(1168)
1087x681x956	545
(43 x 27 x 38)	(1202)
1315x785x1142	920
(52 x 31 x 45)	(2028)
1320×750×1115	920
$(52 \times 30 \times 44)$	(2028)
1320×750×1115	930
$(52 \times 30 \times 44)$	(2072)

Please contact your mtu distributor for current information and binding data.

Series 60

Diesel engines for C&I and Mining applications

Engine	Cylinder data		
	Bore/Stroke mm (in)	Cyl. displac. I (cu in)	Total displac. I (cu in)
\$60	130/160	2.12	12.7
6 Cyl./In-line	(5.1/6.3)	(129)	(775)
S60	133/168	2.33	14.0
6 Cyl./In-line	(5.2/6.6)	(142)	(854)

Please note, specifications are subject to change without notice. All dimensions are approximate. Details are subject to options selected. Please contact your mtu distributor for current information and binding data.

Dimensions, max.	Mass, max.	Weight/Power ratio
LxWxH	(dry)	kg/kW
mm (in)	kg (lbs.)	(lbs./bhp)
1455x925x1380	1290	3.5 - 5.8
(57x36x54)	(2844)	(5.7 - 9.5)
1455x925x1380	1215	2.4 - 5.4
(57x36x54)	(2680)	(4.0 - 8.9)

manufactured by

Series 1000/OM 934/936

Series 1300/OM 471

Series 1100/OM 470

Series 1500/OM 473

Diesel engines for C&I, Agriculture and Mining applications

Engine	Cylinder data		
	Bore/Stroke mm (in)	Cyl. displac. I (cu in)	Total displac. I (cu in)
4R 1000 Cx0	110/135	1.28	5.1
4 Cyl./In-Line	(4.3/5.3)	(78)	(311)
6R 1000 Cx0	110/135	1.28	7.7
6 Cyl./In-Line	(4.3/5.3)	(78)	(470)
6R 1100 Cx0	125/145	1.77	10.7
6 Cyl./In-Line	(4.9/5.7)	(108)	(652)
6R 1300 Cx0	132/156	2.13	12.8
6 Cyl./In-Line	(5.2/6.1)	(130)	(781)
6R 1500 Cx0	139/171	2.60	15.6
6 Cyl./In-Line	(5.5/6.7)	(159)	(952)

Please note, specifications are subject to change without notice. All dimensions are approximate. Details are subject to options selected. Please contact your mtu distributor for current information and binding data.

Dimensions, max.	Mass, max.	Weight/Power ratio
LxWxH	(dry)	kg/kW
mm (in)	kg (lbs.)	(lbs./bhp)
818 x 755 x 1033	510	3.0 - 5.0
(32.2 x 29.7 x 40.7)	(1124)	(4.9 - 8.2)
1059 x 821 x 1033	669	2.6 - 3.6
(41.7 x 32.3 x 40.7)	(1475)	(4.2 - 6.0)
1325x955x1230	950	3.0 - 3.4
(52.7 x 37.6 x 48.4)	(2094)	(4.9 - 5.6)
1375x980x1260	1083	2.8 - 3.4
(54.1 x 38.6 x 49.6)	(2388)	(4.6 - 5.6)
1425×1005×1290	1235	2.7 - 3.1
(56.1 x 39.6 x 50.8)	(2723)	(4.4 - 5.1)

manufactured by

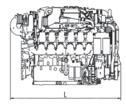
Series 1000/OM 934/936

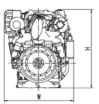
Series 1300/OM 471

Series 1100/OM 470

Series 1500/OM 473

Diesel engines for C&I, Agriculture and Mining applications


Engine	Cylinder data		
	Bore/Stroke mm (in)	Cyl. displac. I (cu in)	Total displac. I (cu in)
4R 1000 Cx1	110/135	1.28	5.1
4 Cyl./In-Line	(4.3/5.3)	(78)	(311)
6R 1000 Cx1	110/135	1.28	7.7
6 Cyl./In-Line	(4.3/5.3)	(78)	(470)
6R 1100 Cx1	125/145	1.77	10.7
6 Cyl./In-Line	(4.9/5.7)	(108)	(652)
6R 1300 Cx1	132/156	2.13	12.8
6 Cyl./In-Line	(5.2/6.1)	(130)	(781)
6R 1500 Cx1 6 Cyl./In-Line	139/171 (5.5/6.7)	2.60 (159)	15.6 (952)

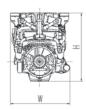

Please note, specifications are subject to change without notice. All dimensions are approximate. Details are subject to options selected. Please contact your mtu distributor for current information and binding data.

Dimensions, max.	Mass, max.	Weight/Power ratio
LxWxH	(dry)	kg/kW
mm (in)	kg (lbs.)	(lbs./bhp)
948 x 860 x 1033	510	3.0 - 4.3
(37x34x41)	(1124)	(4.9 - 7.2)
1067x929x1031	672	2.4 - 3.8
(42x37x41)	(1482)	(3.9 - 6.2)
1295 x 1029 x 1183	938	2.8 - 3.9
(51 x 41 x 47)	(2068)	(4.5 - 6.4)
1393×1043×1215	1071	2.8 - 3.4
(55 x 41 x 48)	(2361)	(4.5 - 5.5)
1442×1099×1237	1230	2.6 - 3.2
$(57 \times 43 \times 49)$	(2712)	(4.2 - 5.3)

Series 2000

Diesel engines for C&I and Mining applications

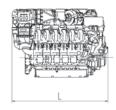
Engine	Cylinder data		
	Bore/Stroke mm (in)	Cyl. displac. I (cu in)	Total displac. I (cu in)
12V 2000 Cx2	130/150	1.99	23.9
12 Cyl./90°V	(5.1/5.9)	(121)	(1458)
16V 2000 Cx2	130/150	1.99	31.9
16 Cyl./90°V	(5.1/5.9)	(121)	(1947)
12V 2000 Cx6	135/156	2.23	26.8
12 Cyl./90°V	(5.3/6.2)	(136)	(1633)
16V 2000 Cx6	135/156	2.23	35.7
16 Cyl./90°V	(5.3/6.2)	(136)	(2177)


Please note, specifications are subject to change without notice. All dimensions are approximate. Details are subject to options selected. Please contact your mtu distributor for current information and binding data.

Dimensions, max.	Mass, max.	Weight/Power ratio
LxWxH	(dry)	kg/kW
mm (in)	kg (lbs.)	(lbs./bhp)
1864×1205×1286	2416	3.2 - 4.3
$(73.4 \times 47.4 \times 50.6)$	(5326)	(5.3 - 7.0)
2360x1247x1314	2994	3.0 - 3.8
$(93 \times 49, 1 \times 51, 7)$	(6601)	(4.9 - 6.3)
2028×1278×1461	2950	3.8
$(79.8 \times 50.3 \times 57.5)$	(6503)	(6.2)
2378×1288×1488	3350	3.5
$(93.6 \times 50.7 \times 58.6)$	(7385)	(5.7)

Series 4000

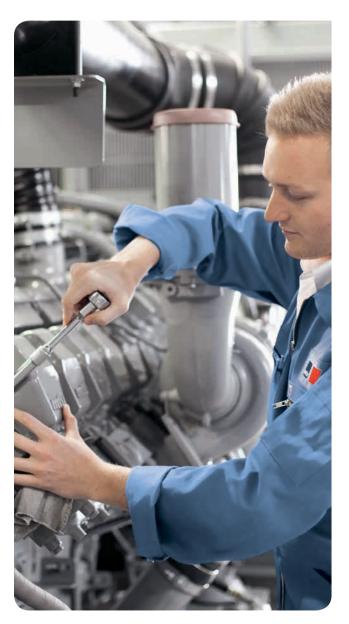
Diesel engines for C&I and Mining applications


Engine	Cylinder data		
	Bore/Stroke	Cyl. displac.	Total displac.
	mm (in)	I (cu in)	I (cu in)
12V 4000 Cx1	165/190	4.06	48.8
12 Cyl./90°V	(6.5/7.5)	(248)	(2978)
16V 4000 Cx1	165/190	4.06	65.0
16 Cyl./90°V	(6.5/7.5)	(248)	(3967)
20V 4000 Cx2	165/210	4.49	89.8
20 Cyl./90°V	(6.5/8.3)	(274)	(5480)
12V 4000 Cx3	170/210	4.77	57.3
12 Cyl./90°V	(6.7/8.3)	(291)	(3493)
16V 4000 Cx3	170/210	4.77	76.3
16 Cyl./90°V	(6.7/8.3)	(291)	(4656)
20V 4000 Cx3	170/210	4.77	95.4
20 Cyl./90°V	(6.7/8.3)	(291)	(5822)

Please note, specifications are subject to change without notice. All dimensions are approximate. Details are subject to options selected. Please contact your mtu distributor for current information and binding data.

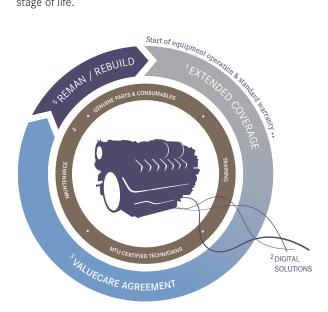
Dimensions, max.	Mass, max.	Weight/Power ratio
LxWxH	(dry)	kg/kW
mm (in)	kg (lbs.)	(lbs./bhp)
2409 x 1588 x 1736	6045	4.0 - 5.1
(94.8 x 62.5 x 68.3)	(13325)	(6.6 - 8.3)
2879 x 1588 x 1736	7030	3.5 - 4.4
(113.4 x 62.5 x 68.3)	(15615)	(5.8 - 7.3)
3647x1609x2065	9865	3.6
(143.6 x 63.3 x 81.3)	(21750)	(6.0)
2497x1629x2065	7000	4.2 - 5.9
(98.3 x 64.1 x 81.3)	(15430)	(6.8 - 9.7)
3020 x 1 629 x 2065	8100	3.6 - 5.4
(118.9 x 64.1 x 81.3)	(17860)	(6.0 - 8.9)
3647x1609x2065	10700	3.6 - 4.5
(143.6 x 63.3 x 81.3)	(23590)	(6.0 - 7.4)

Series 4000


Diesel engines for C&I and Mining applications

Engine	Cylinder data		
	Bore/Stroke mm (in)	Cyl. displac. I (cu in)	Total displac. I (cu in)
12V 4000 Cx5	170/210	4.77	57.2
12 Cyl./90°V	(6.7/8.3)	(291)	(3491)
16V 4000 Cx5	170/210	4.77	76.3
16 Cyl./90°V	(6.7/8.3)	(291)	(4656)

Please note, specifications are subject to change without notice. All dimensions are approximate. Details are subject to options selected. Please contact your mtu distributor for current information and binding data.


Dimensions, max.	Mass, max.	Weight/Power ratio
LxWxH	(dry)	kg/kW
mm (in)	kg (lbs.)	(lbs./bhp)
2633 x 1631 x 1997	7960	4.3 - 6.9
$(103.7 \times 64.2 \times 78.6)$	(17549)	(7.0 - 11.4)
3201 x 1631 x 1997	9350	4.1 - 4.9
$(126.0 \times 64.2 \times 78.6)$	(20613)	(6.7 - 8.0)

Ensure a long, reliable life.

As your equipment ages, its needs-and yours-change.

MTU ValueCare wraps around your MTU investment, providing 360 degrees of customized support, for optimal value at every stage of life.

MTU ValueCare can help you:

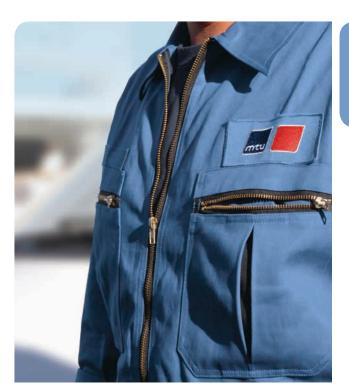
- 1. Avoid the unexpected with added protection beyond the standard warranty*.
- 2. Make better decisions faster with digitally-enhanced tools*.
- 3. Maximize availability and optimize lifecycle costs with a individually tailored ValueCare Agreement*.
- 4. Improve system performance and extend equipment life with on-demand support from MTU.
- 5. Keep a good thing going with MTU reman/rebuild solutions.
- * Available for mining engines and systems.

MTU ValueCare

Rely on MTU expertise.

To give your equipment a long and productive life, choose a partner you can trust. Only MTU-certified technicians know how to get the job done right using proven service methods, MTU-specified maintenance schedules and genuine OEM parts and consumables. Whatever level of support you need, our global network of factory-trained professionals is ready to prepare a customized plan to help you maximize performance and minimize life-cycle-costs.

If you need us a little:


On-Demand Support-including professional inspections and preventive maintenance recommendations from MTU - helps you identify and address problems early, save on repairs or unexpected downtime, and optimize your equipment's performance and longevity. Inspections include visual assessment, test run and leak check, on-site oil and coolant analysis, diagnostic evaluation and reporting.

If you need us a lot:

ValueCare Agreements for mining applications make it easy to keep your business running smoothly and reduce total cost of ownership by maximizing uptime, optimizing lifecycle costs and helping you avoid equipment related business disruptions through preventive maintenance.

Learn from the best.

Training is a great way to become proficient with MTU engines and systems and get maximum efficiency from your equipment. From preventive maintenance to diagnostics and repair, our training programs provide a hands-on learning experience with knowledgeable, expert trainers. We offer a wide range of customized training programs around the world to maximize your return on investment.

Never compromise.

MTU engines and systems are built to last with legendary high standards. When it's time for service, don't settle for anything less. For maximum reliability, performance and uptime, choose a name you can trust - MTU.

ValueCare Agreements

Focus on your operations. Leave the rest to us.

MTU ValueCare

Protect your investment.

Service solutions designed around your priorities

ValueCare Agreements make it easy to optimize lifecycle costs, maximize uptime and devote more time and resources to your core business, with tailored solutions to move your business forward.

Gold

Maximize operational uptime

Gold includes all benefits of Bronze and Silver levels plus:

- Operational uptime commitment to meet or exceed your availability targets
- Engine preservation management
- Monthly reporting including availability and repair times
- Annual performance meetings and trend analysis

Eliminate unexpected maintenance costs

Silver includes all benefits of Bronze level plus:

- Predefined rate per operating hour for maintenance and repairs
- Predefined prices for extended component maintenance and major overhauls
- Quarterly reliability reporting
- Proactive remote engine health monitoring, including maintenance planning and troubleshooting

Bronze

Ensure parts availability and price stability

- Only for customers with selfservice maintenance capabilities
- Predefined rate per operating hour for basic maintenance components
- Automatic delivery of preventive spare parts based on operating hours
- Quarterly maintenance reporting and maintenance forecast
- Annual on-site engine health check

MTU engines - backed by Extended Coverage - provide invaluable peace of mind beyond the standard warranty. With Extended Coverage, you can be assured that the costs of unexpected repairs are covered, with service performed by MTU-certified technicians—upholding resale value and ensuring long-term confidence in your MTU investment.

Extended Coverage protects you from the cost of unexpected repairs beyond your standard warranty, with professional service from MTU-certified technicians and coverage tailored to your needs. Packages can also be extended up to 5 years and are fully transferrable, enhancing resale value. Coverage includes material and labor for troubleshooting, fault clearance and corrective services to engines and on-engine electronics (excluding gearbox, alternators, or similar components). To ensure maximum quality, all repairs are conducted using only genuine parts from MTU.

Digital Solutions

The future is digital.

Remanufactured Products

Exchange and save.

Fueled by your system's data—and supplemented with MTU's exclusive expertise, smart analytics and extensive database—our digital solutions magnify the power of your MTU investment.

From proactive failure prevention and intelligent troubleshooting to instant failure support and smart maintenance planning, digital solutions unlock the full potential of your MTU system.

Service in your pocket

Designed to support on-site operators of MTU-powered equipment, Go! Act:

- Receives push notification of failure codes from connected assets
- Provides crew members with vital information about failure codes
- Supports event reporting with convenient photo capture functionality
- Enables direct communication with fleet managers or the MTU Customer Assistance Center

Monitor your fleet

Built for fleet managers with MTU-powered equipment, Go! Manage:

- Provides a live overview of fleet, asset and engine conditions
- Displays active and closed alarms
- Enables interaction and communication with on-site staff via Go! Act
- Shows maintenance schedule, with completed tasks clearly marked
- Supports remote troubleshooting via multigraph

Factory remanufactured MTU products deliver the same high standards of performance, service life and quality as new MTU products, along with identical warranty coverage - at a fraction of the cost. And with design and model-related updates, they also feature similar technological advancements. Developed by R&D engineers, the remanufacturing process saves you time and money, while benefiting the environment through the reuse of materials. To help you work efficiently, a wide range of remanufactured parts, engines and systems are available worldwide.

Reduce lifecycle costs.

As you evaluate your long-term power needs, you must consider a variety of factors. Factory remanufactured products are a smart solution, helping you reduce the total lifecycle cost of your equipment.

Save time.

Factory remanufactured products put your equipment back to work faster than an overhaul, which reduces downtime, service time and indirect costs such as storage.

Maintain MTU standards.

All products are remanufactured to strict MTU standards by MTU-certified technicians at regional MTU reman centers. Only MTU can remanufacture MTU parts, engines or systems to original MTU factory specifications.

Protect the environment.

Since remanufacturing is an efficient use of resources and energy, factory remanufactured products benefit the environment as well.

Local support. Worldwide.

Whenever and wherever you need expert support, MTU specialists are available. Our global service network of more than 1,200 locations - backed by our cutting-edge Parts Logistics Centers provides you this assurance. To find your local MTU distributor, visit www.mtu-online.com.

Always on call, 24/7

Whether it's connecting you with a local service partner or assigning an urgent problem to a dedicated team of MTU experts, we're ready to assist you—wherever you are, whatever you need.

Europe, Middle East, Africa +49 7541 90-77777 Asia/Pacific +65 6860 9669 North and Latin America +1 248 560 8888

info@mtu-online.com

Exhaust emissions

Many countries have implemented environmental legislation to protect people from consequences of polluted air. For this reason an increasing number of countries regulate emissions from specific mobile and stationary sources.

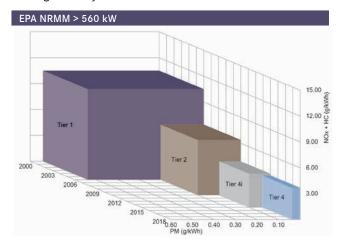
Emission standards may apply internationally, nationally and/or for specific areas. The enforcement of an emission legislation may depend for example on the area where the equipment is used and the way it is operated.

The emission legislations may be categorized by power range and/ or cylinder capacity. Emission legislations generally require a certificate which states compliance. Stationary applications may require on-site approvals (on-site emission test) depending on the particular emission legislation.

Please find as follows examples of emission standards which apply to the C&I, Agriculture and Mining Industry. For details please consult the applicable legislation and/or permitting authority.

Emission legislation for C&I, Agriculture and Mining applications may differentiate between mobile and stationary applications/ machinery.

Nonroad mobile machinery emission legislation may differentiate between constant and variable speed applications.


Nonroad mobile machinery emission legislation may differentiate between ratings and cylinder volume.

Emission legislation for mobile applications are e.g. US EPA, EU NRMM, China NRMM, MoEF India/CPCB

Stationary emission legislation differentiates between emergency standby and non-emergency applications. Usually non-emergency applications have more stringent emission limits. Engines for emergency standby applications are often limited by operating hours per year. The operating hour limitation may be defined differently from country to country. Especially stationary applications may be subject to more stringent regional or municipal emission limits (e.g. Non-Attainment Areas).

Emission legislation for stationary applications is highly fragmented, e.g. US EPA, EU NRMM, TA-Luft, NEA Singapore, MoEF India/CPCB, China NRMM.

Sample for emission stages in C&I, Agriculture and Mining industry: EPA

Examples for emission level description:

- US EPA Nonroad Tier 4 (40CFR1039)
- -> certified
- US EPA Nonroad Tier 2 Comp (40CFR89)
 - -> compliant with emission legislation not certified
- US EPA Nonroad Tier 2 Comp
- -> compliant and corresponding to emission limit values not certified

Emission Flex Package

No matter where in the world your machines operate, you need a drive package that performs. With our Emission Flex Package, you increase the flexibility in highly regulated markets as well as in countries with no or lower emissions standards. With two engine generations from 100-460 kW, we are well prepared to offer the solution that meets your individual requirements best.

Emission Flex Package for Series 460, 500 and 900 EU Stage IIIB/EPA Tier 4i engines

To be operated in non-regulated countries, your used EU Stage IIIB/EPA Tier 4i engines can be adjusted accordingly. For this modification, no hardware changes are necessary; the MTUcertified, authorized service dealers only update the software and decertify the engine*. The aftertreatment system may remain in the vehicle, saving time and removal costs. However, if the SCR components are removed, even higher sulphur tolerances may be achieved. This is completely up to you. We help you decide which option is best for you.

Emission Flex Package for Series 1000-1500 EU Stage IV/EPA Tier 4f

If you plan to operate your EU Stage IV/EPA Tier 4f engines in countries with no or less stringent emissions regulations, MTU offers two options:

- Order new engines with the Emission Flex Package. This allows you to export your machines to anywhere from highly regulated countries to less or non-regulated countries with just one engine installation
- **Adjust** your engines in operation to more lenient emissions regulations. The modification is done by software update and recertifying* to UN ECE R96 Emission Flex Package (EFP) emission standard, no hardware changes are necessary. Removal of the SCR components is optionally. The new emissions conformity is documented in the system data.

Benefits:

- Quick and easy modification through electronic update only
- Cost-efficient solution for customers selling and purchasing used EU Stage IIIB/EPA Tier 4i products in non-regulated countries
- Higher sulphur tolerance so that engines can be operated anywhere
- **Economical use of resources** by enabling second life for engines outside of emission regulated markets
- Higher technological standard than older, non-regulated engines which directly translates into fuel savings and lower life-cycle costs

Benefits compared to classic

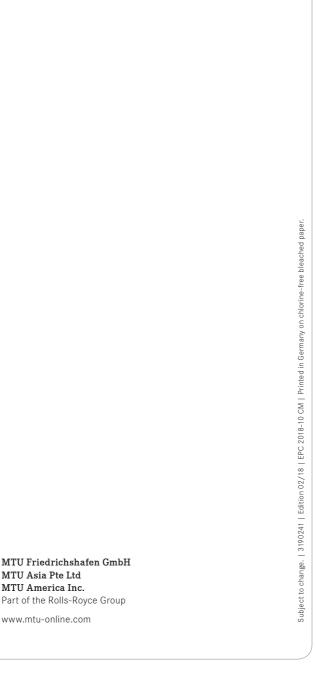
EU Stage IIIA/EPA Tier 3 engines:

- Common engine platform and dimensions
- **Less integration effort** due to identical interfaces and same dimensions
- Better fuel efficiency
- Better power curves for more efficient operation
- Future-proof engines that are continually enhanced

^{*} Due to emission compliance regulations you need to remove labels and certification numbers in advance so that de-/recertication can be conducted.

Notes

Conversion Table


_
_
_
_
_
_
_
_
_
 _
_
_
_
_
_
_
_
_
_
_
_
 _
 _
_
_
_

Additional available sales programs:

- Marine
- Rail
- Gendrive
- Oil & Gas

1 kW	= 1.360 PS	g	=	9.80665 m/s ²
1 kW	= 1.341 bhp	Π	=	3.14159
1 HP	= 1.014 PS	е	=	2.71828
1 oz	= 28.35 g			
1 lb	= 453.59 g	1 lb	=	16 oz
1 short ton	= 907.18 kg	1 short ton	=	2000 lbs
1 lb/HPh	= 447.3 g/PSh	1 ft lb	=	1.356 Nm
1 lb/HPh	= 608.3 g/kWh	1 ft/min	=	0.00508 m/s
1 gal/HPh(US	s)= 4264 g/kWh	pDiesel	=	0.83 kg/l
1 kWh	= 860 kcal	1 lb/sqin	=	0.069 bar (1 psi)
1 cal	= 4.187 J	1 mm HG	=	1.333 mbar
				(133.3 Pa)
1 BTU	= 1.055 kJ	1 mm WS	=	0.0981 mbar
				(9.81 Pa)
1 inch	= 2.540 cm	T (K)	=	t (°C) + 273.15
1 sq. inch	$= 6.542 \text{ cm}^2$	t (°C)	=	5/9 x (t (°F) -32)
1 cu. inch	$= 16.387 \text{cm}^3$	t (°C)	=	5/4 x t (°R)
1 foot	= 3.048 dm	1 foot	=	12 inches
1 sq. foot	$= 9.290 \text{ dm}^2$	1 yard	=	3 feet
1 land mile	= 1.609 km	1 land mile	=	5280 feet
1 naut. mile	= 1.853 km	1 naut. mile	=	6080 feet
1 GB Gallon	= 4.546			
1 US Gallon	= 3.785			
1 US Barrel	$= 0.159 \text{ m}^3$			
	= 42 US Gallons			

Energy:	1 J = 1 Ws = 1 VAs = 1 Nm
Power:	1 W = 1 VA = 1 Nm/s
Force:	$1 N = 1 kgm/s^2$
Pressure:	1 Pa = 1 N/m 2 (1 bar = 10^5 Pa)
MEP (bar)	$= P_{cyl}(kW) \times 1200$
	n(1/min) x V _{cyl} (I)
Torque (Nm)	$= P_{ges}(kW) \times 30000$
	n(1/min) x π

